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1 Generative models may limit their ability to model
complex data distributions for object placement.

3 Transformer networks with a sparse contrastive
loss leads to imprecise placement overrelaxed
regularization.

1 Anovel paradigm that formulates object placement as
a placement-by-detection problem.

d  First identifies regions of interest suitable for object
placement by training a dedicated detection
transformer on object-subtracted backgrounds
with multi-object supervisions.

d It then associates each target compositing object with
detected regions based on semantic complementary.

d Using a boostrapped training approach on
randomly object-subtracted images, our model
regularizes meaningful placements through richly
paired data augmentation.

3 Experimental results on standard benchmarks
demonstrate the superior performance of our method
in object reposition, significantly outperforming
state-of-the-art baselines on Cityscapes and OPA
datasets with notable improvements in IOU scores.

1 Additional ablation studies further showcase the
compositionality and generalizability of our approach,
supported by user study evaluations.
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O Association over all regions of interest in the image for
each object patch: (ol )
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@ Semantic complementary:
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@ Train jointly with standard detection losses, including
classification loss and bounding-box regression loss:

L = Leis + Loz + BLasso-
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Experimental Results

Cityscapes oPA
10US0@1  IoU@l I0US0@S I0U@S I0US0@l  10U@l  I0US0@5  IoU@s

PlaceNet (ECCV*20) [56] 0 0045 0 0045 276 0116 1009 0225
GracoNet (ECCV*22) [60] — — — — 249 0131 1660 0248
SAC-GAN (IEEE TVCG'22) [59] 0806 0.082 108 0085 — — — —
TopNet (CVPR'23) [61] 0807 0045 161 0070 1155 0197 1595 0241
BOOTPLACE (ours) 350 0.097 591 0.190 1160 0.197 2241 ___0.281]

Table 1. Quantitative results of object reposition on Cityscapes and OPA datasets, evaluated by IOUS0 (%), top-1 and top-5 I0U.
P s 015

--- PN SACGANTT TN 7] [0
Cityscapes 0.183 0.269 0.246 | 0.303

Mapillary Vistas 0.133 0.285 0.260 |0.323

Table 2. Quantitative comparisons of car placement on
Cityscapes and Mapillary Vistas datasets, evaluated by user study.
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Object replacement on Cityscapes dataset.
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Object replacement on OPA dataset.

Obm Target image PlaceNet SACGAN Topet BOOTPLACE (our)

n!EEERElE!E

Object placement on Mapillary Vistas dataset.




